
18 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 1, NO. 1, FEBRUARY 2005

Building Holonic Supply Chain Management
Systems: An e-Logistics Application for the

Telephone Manufacturing Industry
Mihaela Ulieru, Senior Member, IEEE, and Mircea Cobzaru

Abstract—As an exercise in agent-based software engineering,
this work proposes a holonic model for the domain of supply chain
management. The supply chain system is a distributed infra-
structure that enforces protocol rules and through which agents
registered on a domain find each other, access the knowledge
base, communicate (exchange messages), and negotiate with other
agents, which are independent entities with specific goals and
resources. It is considered that individual resources that belong
to each agent are not sufficient to satisfy their goals; therefore,
the agents must procure the needed resources from other agents
present in the system through negotiation. Our approach is based
on the holonic enterprise model with the Foundation for Intelligent
Physical Agents (FIPA) Contract Net protocols applied within
different levels of the supply chain holarchy. To accommodate
differentiation of interests and provide an allocation of resources
throughout the supply chain holarchy, we use nested protocols
as interaction mechanisms among agents. Agents are interacting
through a price system embedded into specific protocols. The
negotiation on prices is made possible by the implementation
of an XML rule-based system that is also flexible in terms of
configuration and can provide portable data across networks.

Index Terms—Holonic enterprise, supply chain holarchy, agent
technology, nesting protocols, ontology, FIPA architecture.

I. MOTIVATION—AGENT TECHNOLOGIES AS ENABLERS OF

TODAY’S SUPPLY CHAIN MANAGEMENT DYNAMICS IN THE IT
DRIVEN GLOBAL ECONOMY

A. Traditional Approaches

SUPPLY chain management (SCM) is the logical progres-
sion of developments in logistics management. Traditional

supply chains begin at the point of manufacture and end with
the sale to consumers. The focus of the supply chain profes-
sionals has been on the products that flow through the oper-
ations and logistics channels. SCM software applications pro-
vide analytical systems that manage the flow of product and in-
formation throughout the supply chain network of trading part-
ners and customers. They are designed to improve SCM opera-
tions—supplier sourcing, production planning, inventory man-
agement, transportation, demand planning, and so on. Software
producers for SCM compete in providing the most complete
package of solutions for supply chain networks trying to inte-
grate various models into a seamless, unitary system that brings
maximum benefits for a company. The typical way of addressing

Manuscript received June 12, 2004; revised December 16, 2004.
The authors are with the Electrical and Computer Engineering Depart-

ment, The University of Calgary, Calgary, AB, T2N 1N4 Canada (e-mail:
Ulieru@ucalgary.ca).

Digital Object Identifier 10.1109/TII.2005.843827

these requirements is to employ a manufacturing resource plan-
ning (MRP) or enterprise resource planning (ERP) system that
integrates a vast amount of information and makes this infor-
mation available to a broader range of participants. The top
software vendors and their product suites for SCM are SAP
[15], Manugistics [11], J. P. Edwards [8], PeopleSoft [14], Or-
acle [13], and AppriseNet [1] all offer solutions that enable
the transformation of the old linear supply chain mode into a
global network through the integration of cross-department and
cross-company processes. More recently e-Business solutions
accompanying the SCM packages enable companies to manage
the entire value chain across business networks. Most of the so-
lutions proposed have a twofold focus: On one side, they en-
able enterprises to understand, predict, and manage customer
demand effectively, leading to enhanced customer service, in-
creased market share, and higher profitability, and on the other
side, they provide more efficient ways to manufacture and dis-
tribute products.

Although the above-mentioned models can support a variety
of business functions, there is no unified solution that is able
to support all functions equally well. At present, SCM solu-
tions are fragmented along functional applications into specific
areas—for example, advanced planning and scheduling for the
manufacturing plant, demand planning for the sales group, and
transportation planning for the distribution center. The old way
of delivering a product was to develop projections on demand,
manufacture the product, and fill up warehouses with finished
goods. Later in the 1960s, integrating warehousing and trans-
portation functions provided inventory-reduction benefits from
the use of faster and more reliable transportation. The next phase
in SCM development was the “logistics stage” that incorporated
manufacturing, procurement, and order management functions.
The current stage is the “integrated supply chain management
stage” [12]. This is viewed as a process-oriented, integrated ap-
proach to procuring, producing, and delivering products, and
services to customers. It covers the management of materials,
information, and funds flows.

B. Requirements for the Next Generation SCM Systems

The next generation of SCM systems will have to deal with
the supply chain’s growing complexity and should posses the
following set of characteristics.

• Integration: This is the keyword that appears
throughout the new generation of supply chain be-
cause it makes the difference between the old view of

1551-3203/$20.00 © 2005 IEEE

ULIERU AND COBZARU: BUILDING HOLONIC SUPPLY CHAIN MANAGEMENT SYSTEMS 19

logistics as the discrete functions of transportation and
distribution and the new vision of SCM that links all
the participants and activities involved in converting
raw materials into products and delivering them to
consumers at the right time and at the right place.

• Customer-centric service: Providing online commit-
ments for orders and schedules is a key factor to en-
hancing customer service and gaining a competitive
advantage. Many companies envision this capability as
part of the future SCM strategy. The next generation of
SCM would solve customers’ problems [3], [16] by

— gathering and analyzing knowledge and data about
customers’ needs;

— identifying partners to perform the functions needed
in the demand chain;

— moving the functions that need to be done to the chain
member that can perform them most effectively and
efficiently;

— developing and executing the best logistics, trans-
portation, and distribution methods to deliver prod-
ucts and services to consumers in a timely manner.

• Synchronization: The next generation of supply chain
suites will have to synchronize supplier planning,
production planning, logistics planning, and demand
planning. These solutions will provide a comprehen-
sive view of all supply chain activities and enable
management to make more informed tradeoff deci-
sions. Supply chain synchronization is the secret to
improving customer service without increasing inven-
tory investment.

• Agility: SCM systems must be able to process trans-
actions rapidly and accurately. In today’s business en-
vironment, organizations must focus on moving infor-
mation and products quickly through the entire supply
chain, distribution, assembly manufacture, and supply.
The faster that parts, information, and decisions flow
through an organization, the quicker it can respond to
customer needs and orders.

• Flexibility: The next generation of SCM systems can
create an advantage by being flexible enough to cus-
tomize its services to meet the needs of distinct cus-
tomer segments or individual accounts. The flexibility
to meet diverse customer needs in a cost-effective way
can distinguish a company and allow it to serve a wider
customer category.

• Information Protection: In today’s global economy, it
is of the essence to ensure that information is securely
protected while various companies (some of which
may be competitors) collaborate within the same
supply chain.

The typical way of building an SCM system to deal with the
complex activities in the supply chain is to integrate several
models, e.g., subsystems such as enterprise resource planning
(ERP), active server pages (ASPs), product data management
(PDM), etc., into a single system. The problem is that most of
the subsystems mentioned above are proprietary, and their ven-
dors provide interfaces to other types of subsystems (e.g., PDM
to ERP) but seldom to another subsystem of the same type from

a different vendor (e.g., ERP to ERP), which makes these com-
ponents dependent on each other. This could make it difficult
to combine different supply chain and enterprise systems due to
lack of compatibility among them.

C. Case for Agents

Although autonomous agents have been used in enterprise
integration and supply chain networks, they are still in the stage
of experimentation and in course of being implemented as
complete solutions. Agents are suitable for integrating supply
chain functions because they can extend applications like
production, distribution, and inventory management functions
across supply chains spanning various organizations without
the need for additional interfaces especially when a common
infrastructure is used. Because supply chain management is
concerned with coherence among multiple decision makers,
a multi agent-modeling framework based on communications
between constituent agents (such as manufacturers, suppliers,
retailers, and customers) seems a natural choice to design and
implement these dynamic environments.

All the traditional SCM systems are enormously complex by
nature and it is quite difficult to optimize them as a whole, but
using semiautonomous agents acting on a few simple rules can
change the way the entire system is understood and optimized,
just by modeling and changing the agents’ behavior.

Agents can also expand the level for supply chain collabo-
ration across multiple enterprises including resources, events,
and the relationships between them, thus transforming closed
trading partner networks into open markets.

An important aspect that deserves attention is order-
tracking/reporting. Currently, this activity is done by direct
communication between human personnel involved in the
supply chain staff. Mobile agents can improve the current
approach considerably by following the orders throughout
the entire supply chain. This enhances the system with the
capability to track “on the spot” the status of each individual
order.

II. NEW TRENDS—FROM SUPPLY CHAIN TO

COLLABORATIVE CLUSTER

Developments in artificial intelligence and multiagent sys-
tems have made it possible to apply agent technology not only to
supply chain management but also to manufacturing planning,
scheduling, and control.

Holonic manufacturing systems [4] have been explored in the
past ten years as a new step toward distributed intelligent archi-
tectures for manufacturing [17]. They were also thought as an
alternative solution to traditional architectures (e.g., computer
integrated manufacturing systems) that have a low capacity to
adapt and react to dynamic changes in the environment such as
disturbances and market changes [17]. A holonic manufacturing
system is composed of functional manufacturing units called
holons—units that display the dual properties of autonomy and
cooperativeness. A holon, as defined by the Holonic Manufac-
turing Systems (HMS) consortium [4], consists of an informa-
tion processing part and often a physical processing part and
can be part of another holon in a nested hierarchy. The activities

20 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 1, NO. 1, FEBRUARY 2005

Fig. 1. Layers in Holonic manufacturing defining a manufacturing holarchy.

of each holon are determined through cooperation with other
holons, as opposed to being determined by a centralized mech-
anism.

There is a close relationship between holons and agents [17]
in that a holon can be mapped to groups of agents that together
fulfill a certain functionality of the system. From this perspec-
tive, holons can be regarded as nested agents defining various
levels of resolution within the system under discussion. As such,
intelligent agents can be used to encapsulate existing legacy
software systems and integrate manufacturing enterprises’ ac-
tivities such as design, planning, scheduling, simulation, exe-
cution, and product distribution, with those of their suppliers,
customers and partners into an open, distributed environment
[17]. The Holonic Enterprise can be viewed as an information
ecosystem composed of collaborative but autonomous holons
(see Fig. 1).

The Multi-Enterprise level models the interaction between
distributed enterprises, which interact with their suppliers and
customers. In the Enterprise level, we find the co-operation be-
tween geographically apart entities, the sales offices and the pro-
duction sites. In the Shop Floor level, we find the distributed
manufacturing control within a production site or shop floor.
Here, the entities are distributed work areas working together
and in co-operation, in order to fulfill all orders allocated to
them. The basic level (the Cell) models the interactions between
atomic holons (equipments and humans).

III. IMPLEMENTATION OF A HOLONIC SCM SYSTEM FOR

A GLOBAL ENTERPRISE—A CASE STUDY FOR THE PHONE

MANUFACTURING INDUSTRY

A. Agent-Based Application Development Methodology

To implement the agent-based application for supply chain
management, we follow the methodology proposed by Kendall;
see Fig. 2.

Agent systems analysis and design phases are primarily based
on role modeling [2]; thus, an agent’s behavior is modeled on the

Fig. 2. Agent-based application development methodology [9].

basis of the roles that it plays. During the analysis stage, relevant
role models are identified by focusing on the agents and their
interactions. During the design stage, roles that a given agent
needs to play are refined and composed.

The realization stage of an agent based application combines
the creation of the agents through the implementation of role
specific solutions identified in the previous stages, with the de-
velopment of a specific ontology based on the knowledge mod-
eling from the design phase.

Finally, the last phase in the process of building an agent-
based application will deal with runtime issues related to de-
ployment: testing and debugging.

In the sequel, we will illustrate the methodology (Fig. 2) on
a supply chain scenario from the manufacturing and delivering
of telephones and answering machines by modeling the roles
corresponding to the specific entities’ functions and assigning
responsibilities to the agents that will perform these roles. Con-
sider a manufacturing scenario in which company “A” produces
telephones and answering machines, subcontracting the produc-
tion of circuit boards to another company “B.” In order to build
a single system to automate (certain aspects of) the production
process, the internals of both companies “A” and “B” have to
be modeled. However, neither company is likely to want to give
up information and/or control to a system designer representing
the other company.

B. Application Analysis

The objective of the analysis phase is to understand the struc-
ture of the system to be developed without worrying about the
implementation details and assign roles to agents in a consistent
manner, following closely the system’s requirements and defi-
nition. In our case, the system is viewed as an organization or
collection of roles that relate to each other and form an inter-
action model. Roles in the system are descriptions of business
entities, whose functions are modeled at an abstract level.

1) Business Description: Supply chain business processes
usually deal with the production and transfer of resources on
demand to those that need them.

The business domain entities and relationships are based on
the purpose and functions of the supply chain system and are
modeled in terms of objects representing user roles, businesses,
and services. In our case, it covers four business domains (see
Fig. 3).

2) Product Description: Building products like telephones
or answering machines involves the acquisition and integration
of different components and materials, from various manufac-
turers and suppliers, thus providing a suitable example of a
supply chain.

ULIERU AND COBZARU: BUILDING HOLONIC SUPPLY CHAIN MANAGEMENT SYSTEMS 21

Fig. 3. Business domains and relationships in an agent-based supply chain
application.

Fig. 4. Order-management holarchy.

We will consider the general case of a product consisting
of components provided by different manufacturers and parts
or subcomponents provided by suppliers. For the sake of sim-
plicity, we assume the following.

• Telephones consist of a printed circuit board, a molded
case, and transmitter-receiver equipment as compo-
nents and cables as parts or subcomponents.

• Answering machines will be made of a printed circuit
board (different than the one used for telephones), a
molded case, and power adapter as components and
cables as parts.

• Printed circuit boards are manufactured from elec-
tronic parts as subcomponents.

3) Order Management Holarchy: At this level, the fol-
lowing entities interact (see Fig. 4):

• the Customer—the end user of a product who triggers
the production and transfer of resources on demand;

• the Order Manager—responsible for acquiring orders
and handling customers’ requests;

• the (e)Logistics—attached to the manufacturer (assem-
bler) of the final product (the Assembly Plant), being
responsible for coordinating manufacturers and sup-
pliers and negotiating the production and delivery of
needed resources (components, parts);

Fig. 5. Manufacturing holarchy.

• the Planning Holon—responsible for the coordination
of assembly tasks;

• the Transport Unit—responsible for the management
of transportation resources;

• the Inter-Enterprise Mediator—the link with the other
holarchies involved in the supply chain (such as the
manufacturing holarchy).

4) Manufacturing Holarchy: The participants in the manu-
facturing holarchy and their capabilities are the following (see
Fig. 5):

• the Assembly Plant (the main participant)—a tele-
phone and answering machine manufacturer that
acquires the necessary components for building these
products and assembles them;

• the Cable Supplier—direct supplier for the assembly
plant.

The collaborators of the assembly plant are

• transmitter receiver plant;
• printed circuit board plant, having one supplier of elec-

tronic parts;
• power adapters plant;
• molded cases plant.

Each of the above-described roles is assigned to an agent, as
will be detailed later (in Section III). Fig. 6 presents the overall
holarchy integrating both the order—management and manu-
facturing levels. (At the order-management level, another im-
portant holon is illustrated: the Bank—responsible for transfer-
ring funds between accounts upon demand when resources have
been transferred as part of a transaction.)

5) System Requirements: The requirements are divided into
three categories as follows.

• Support for automation of ordering: This system re-
quirement aims to facilitate and automate the process
of ordering a product in the supply chain market and
delivery of resources on demand among the partici-
pants present on the Enterprise level.

• Support for multiagent negotiation: Negotiations re-
quire a particular protocol and an inference engine to
help the agents reach a decision, mainly based on their
financial goals. In addition, the negotiated transactions

22 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 1, NO. 1, FEBRUARY 2005

Fig. 6. Supply chain holarchy.

need a certain amount of time to complete, during
which a context must be maintained.

• Support for added services: The system has to pro-
vide a number of added services that may be used
in common by the participants in the supply chain
such as 1) directory facilitator, which is a registry of
service names that provides matchmaking between
providers of services and those who request them, 2)
transportation facilities shared by manufacturers, sup-
pliers, and assemblers, and 3) bank facilities accessed
by customers, logistics, and plants in the process of
closing a transaction.

6) Supply Chain Agents Role Modeling: Having defined the
entities involved in the overall holarchy (see Fig. 6) and estab-
lished the roles and their interactions within the supply chain
application, we can create a network of agents based on the re-
sponsibilities that come from these roles and the resources that
need to be produced or consumed. Thus, we identify and design
several types of agents (see Fig. 7).

• Plant Agents that play the roles of the assembler and
manufacturers and are capable of performing appli-
cation specific tasks: For example, the Molded Case
Plant Agent will perform two operations (molding or
casting and finishing) as part of a process of molding
cases. The specific process pertinent to a plant will be
embedded in an agent behavior called at the right time
during the protocol interactions. The Assembly Plant
Agent does not encapsulate all of negotiation, produc-
tion, and supply. The Logistics Agent handles the or-
ders and the negotiations. Although the Logistics entity

Fig. 7. Conceptual model of supply chain agents.

is on the order-management level, it will be acting as
part and on behalf of the Assembly Plant (which is also
part of the manufacturing level, thus bridging the two
holarchies). The other plant agents will have their own
handling of production, supply, and negotiation.

• The Transport Agent is responsible for the allocation
and scheduling of transportation resources required by
the Logistics Agents.

• The Customer Agent is enabled with an interface, acts
on behalf of the customer, and is the one that demands
a product, thus starting the production and transfer of
resources.

ULIERU AND COBZARU: BUILDING HOLONIC SUPPLY CHAIN MANAGEMENT SYSTEMS 23

Fig. 8. Functional perspective of system architecture.

• The Order Manager Agent is responsible for handling
requests from customers, approving orders, and get-
ting information regarding the orders. Then, the infor-
mation captured would be transferred to the Logistics
Agents, which are responsible for coordinating plants
and suppliers and negotiating the production and de-
livery of resources across the supply chain network.
This agent is also responsible for locating the service
providers by looking up the directory facilitator for ser-
vices that match a request.

• The Bank Agent is responsible for transferring money
between accounts when a transaction is completed.

C. Agency Design

The agency design process is divided into five steps: 1) pre-
sentation of the system software architecture; 2) agent defini-
tions and responsibilities; 3) knowledge modeling; 4) the struc-
ture of an agent class, and 5) sequence class diagram.

1) System Software Architecture: To build our SCM system,
we will extend the generic FIPA-compliant agent framework
Java Agent Development Environment (JADE) [7] by imple-
menting application specific (functional) agents, which are spe-
cialized to perform the activities related to the supply chain.

Fig. 8 illustrates the layers of interaction between agents. The
top layer provides assistance for a certain subset of design is-
sues, for example, handling communication, registration, dereg-
istration, search, etc., and consists of generic agents from which
functional agents can be derived. This high-level layer provides
tools for an abstracted view of the multiagent system, allowing
us to concentrate on the behavior level. The next layer is made
of two sets of agents: the platform agents responsible for plat-
form registration, directory service registration, search, etc., and
the application agents, which is derived from the core agent of
JADE. The third layer ensures that the communications (interac-
tions) between agents follow the specified protocols and are han-
dled in conformity with FIPA standards [6]. The bottom layer
enables the interagent and agent to environment communica-
tions by the means of a network.

Fig. 9. Class structure for customer agent.

2) Agent Definitions and Responsibilities: Based on their
role models, agents can be defined and modeled. The agents’
descriptions, protocols, and responsibilities can be summarized
as illustrated for the logistics agent [5]:

Role Schema: (Logistics Agent)
Description: Acts on behalf of the Assembly Plant, manages

shipping of products, and takes care of financial transactions.
Protocols: FIPA REQUEST protocol, FIPA CONTRACT

NET protocol, and nested FIPA ITERATED CONTRACT NET
protocol.

Responsibilities: To register with the directory facilitator as
a provider of services (products), to maintain information about
products, to be aware of the Assembly Plant capabilities, to ini-
tiate negotiation on the supply of a resource, to negotiate the
terms of supplying a specified resource, to ask about transporta-
tion facilities, to request shipping of products, and to request
financial transactions.

3) Knowledge Modeling: To model the knowledge that will
be used by the agent roles results in the identification of the
following elements inherent to the application (see Fig. 9):

Concepts: Expressions that indicate entities that “exist” in
the world and those which agents talk and reason about. They
are referenced inside predicates or agent actions.

Predicates: Expressions that state the ability of agents in the
form of a Boolean variable.

Agent Actions: Expressions that indicate actions that can be
performed by some agents.

To indicate the type of variables inside each concept, pred-
icate, or agent action, low-level expressions named primitives
(strings and integers) are used.

4) Agent Class Structure: Fig. 9 shows the minimum struc-
ture of the Customer agent class that extends the core agent
of JADE, thus inheriting all the functionalities that it needs
to setup, register, shut down, communicate, and so on. The
attributes are instances of JADE content classes, which help
manipulate the content of a message composed in a content
language with reference to the specific ontology. The setup()
method from the bottom field retrieves the content language
and adds a previously created behavior to the agent.

5) Message Sequence Diagram: Fig. 10 presents a sequence
diagram where agents communicate through interaction proto-
cols. The FIPA Iterated Contract Net protocol [6] is used to
handle the negotiations between the Assembly Plant and other

24 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 1, NO. 1, FEBRUARY 2005

Fig. 10. Sequence diagram depicting interactions among SCM agents.

plants for acquiring the needed resources. (Cfp stands for Call
for Proposals).

D. Application Realization

The third stage of the agent development methodology shows
how the Supply Chain application is actually implemented and
consists of the following activities:

— creation of the application ontology;
— building the inference engine;
— creation of agents.
1) Ontology Creation: Our scenario considers the manufac-

turing and delivery of products made of components and parts.
An ontology for SCM is a set of schemas defining the struc-
ture of the predicates, agent actions, and concepts (their names
and slots), all related to the process of ordering, building a tele-

phone or an answering machine, and transportation. The en-
tities (concepts, agent actions, and predicates) and their asso-
ciated attributes, which are an important part of the conversa-
tions between agents, are presented in Tables I–III. The phys-
ical instances (see Table I) will be inherited from the concept
(see Table II). The capabilities of a plant will be inherited from
predicates, and the acts of selling or delivering a product will be
inherited from agent actions (see Table III). The supply chain
ontology is defined in a way that will ensure that the interaction
model between agents points to the same concepts or actions in
a given context.

Proper Java classes for all types of predicates, agent actions,
and concepts in the ontology need to be developed. At this point
in coding the ontology, it has to be mentioned that a class struc-
ture and relations among classes in an ontology are different

ULIERU AND COBZARU: BUILDING HOLONIC SUPPLY CHAIN MANAGEMENT SYSTEMS 25

TABLE I
INSTANCES OF PRODUCTS

TABLE II
“ORDER” CONCEPT

TABLE III
“DELIVER” ACTION

from the structure of a similar domain in an object-oriented pro-
gram because decisions are made based on the structural proper-
ties of a class rather than its operational properties. In practical
terms, this involves the following steps.

• Define classes in the ontology, and arrange them in a
hierarchy.

• Define slots, and describe their allowed values.

• Define individual instances of these classes.
Fig. 11 presents the relationships between classes and in-

stances for our supply chain example.
In Fig. 11, classes are represented as white boxes and in-

stances as gray boxes. Solid arrows represent internal links such
as instance of class or implementation of interface, and dotted
arrows pointing to the “Supplies” class represent slots. The ac-
cess methods are set() and get() functions for the defined vari-
ables.

2) Rule-Based Engine: The rule-based engine presented in
Fig. 12 is written in Java and consists of several classes as fol-
lows:

The RuleBase class stores the list of rules and the instance of a
single goal. The Rule class contains arrays of Conclusions and
Conditions as well as methods for converting these to strings.
The Condition and Conclusion classes have as variables the
names and values of the corresponding elements in the Negotia-
tion.xml file (the CONDITION and CONCLUSION tags), plus
methods for converting these elements to strings.

In Fig. 12, the Goal class has a method for converting the goal
based on the variable (price) corresponding to the one found in
the Conclusion (“lower price”). The PriceN class in this imple-
mentation is constructed with the fixed variable “price,” which
corresponds to the “ChildText” of the element VARIABLE
of CONDITION. The other variable found in this class is the
choice corresponding to the VALUE in CONDITION, which
is a variable that will be the actual input into the engine. A data
buffer is used to write this value from which the engine can
read it and then process it by calling the resolveGoal() method.
If we choose to have the variable “price” of class PriceN as
input as well, all we have to do is modify the xml file to ac-
commodate this change. This way, we will have different con-
ditions depending on this variables, and the rules will look like
this: IF var molded case price AND price THEN
value ,

The Negotiation.xml file contains the if–then rules that are
written in XML, which is ideally suited for sharing them across
applications. Fig. 12 illustrates the association between the
elements in the file and the classes that were briefly presented
above. The elements and attributes present in the Negotia-
tion.xml file are retrieved using JDOM, which is an application
programming interface (API) for manipulating XML docu-
ments.

EqualsPredicate and OfferCommand classes are used to
set the command (“Offer” in the xml file) and the predicate
(“Equals” in the xml file) when the engine is instantiated. When
it comes to embedding the inference engine into the agent, we
input our choice (value), set the command and the predicate,
read the xml file, and call the resolveGoal() method that will
give as the output based on the rules found.

Due to its order of magnitude, we dedicate a separate section
to the Agent Creation in the sequel.

IV. AGENT CREATION

In this section, we present the most important aspects of cre-
ating an agent based on the behavioral model of JADE and the
use of the interaction protocol templates provided as a package

26 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 1, NO. 1, FEBRUARY 2005

Fig. 11. Dependency relationships in the supply chain domain ontology.

to help manage the conversation states among agents in an effi-
cient manner.

A. Behaviors in JADE

Agent implementation in JADE is based on the behavior
model. An agent in JADE is composed of a single execution
thread and its tasks are implemented as “Behavior” objects.
Therefore, to implement an agent specific task, we have to
define one or more Behavior subclasses, instantiate them, and
add the behavior objects to the agent task list. Fig. 13 presents
the class hierarchy for JADE behaviors.

The behavior classes that inherit from the generic Behavior
class are named after the kinds of tasks that they model. For
example, the CompositeBehavior class models a complex task,
the SimpleBehavior class models a simple task that is not com-
posed of subtasks, the FSMBehavior class models tasks that are
composed of subtasks performed in the states of a Finite State
Machine, and so on.

B. Interaction Protocols in JADE

To construct the agents’ conversations, we can use a set of
standard templates for the FIPA interaction protocols. For each
conversation between two agents, we have two corresponding
roles: that of the Initiator, which is the agent that starts the con-
versation, and that of the Responder, which is the agent that
responds to a message as part of a conversation that will take
place. As an example, the ContractNetBehavior class imple-
ments FIPA contract net interaction protocol as a template for
an agent responder to a call for proposals (cfp) message.

A couple of other templates (AchieveREInitiator/Responder)
make it easy to implement inside the agents’ behavior simple
protocols such as FIPA-Request, FIPA-Query, FIPA—Propose,
etc. The instance of AchieveREInitiator is constructed by
passing as argument of its constructor the message used to
initiate the protocol (e.g., request), and the instance of Achiev-
eREResponder is constructed by passing as argument of its
constructor a message template.

ULIERU AND COBZARU: BUILDING HOLONIC SUPPLY CHAIN MANAGEMENT SYSTEMS 27

Fig. 12. Rule-based engine (XML).

Fig. 13. Class hierarchy for JADE behaviors.

The following examples show how FIPA-Request Initiator
and Responder Behaviors are added to a couple of interacting
agents:

The Initiator—The Customer Agent

public class CustomerAgent extends Agent

private boolean finished false;

protected void setup()

try

// create the agent description of itself

DFAgentDescription dfd new DFAgentDescription();

dfd.setName(getAID());

DFService.register(this, dfd);

catch (Exception e) e.printStackTrace();

public void sendMessage()

System.out.println(“Sending request ”);

ACLMessage request new ACLMessage(ACLMessage.REQUEST);

request.setProtocol(FIPAProtocolNames.FIPA REQUEST);

request.addReceiver(new AID(“OrderManager”, AID.ISLOCALNAME));

finished true;

Behavior order request new MyRequest(this, request);

addBehavior(order request);

class MyRequest extends AchieveREInitiator

public MyRequest (Agent a, ACLMessage request)

super(a, request);

protected void handleAgree(ACLMessage agree)

System.out.println(“Agree received from OrderManager”);

protected void handleInform(ACLMessage inform)

System.out.println(“Received the inform message:” inform);

// end of inner class MyRequest

The Responder—The OrderManager Agent

public class OrderManager extends Agent

28 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 1, NO. 1, FEBRUARY 2005

public void setup() Behavior requestB new MyRequestResponder(this,

AchieveREResponder.createMessageTemplate(FIPAProtocolNames.FIPA REQUEST));

addBehavior(requestB);

class MyRequestResponder extends AchieveREResponder

public MyRequestResponder(Agent a, MessageTemplate mt) super(a, mt);

protected ACLMessage prepareResponse(ACLMessage request) throws RefuseException,

NotUnderstoodException

ACLMessage response request.createReply();

response.setPerformative(ACLMessage.AGREE);

System.out.println(“Manager has sent the agree message:”);

return response;

protected ACLMessage prepareResultNotification(ACLMessage request, ACLMessage re-

sponse) throws FailureException

ACLMessage informDone request.createReply();

informDone.setPerformative(ACLMessage.INFORM);

System.out.println(getLocalName() “has sent the message:” inform);

return informDone;

C. Nesting Protocols

Interaction protocols can be nested by using handlers of the
states of the protocols that will register other protocols or ap-
plication-specific behaviors. Interaction protocol classes pro-
vide methods to handle different states of the protocol. As an
example, the method registerPrepareResponse() in FIPA Con-
tractNetResponder protocol allows registration, in the state of
sending back a proposal, of another Contract Net Protocol with
the role of initiator. When messages from this second protocol
have been received, the agent can return and send back the pro-
posal to the first agent that initiated the conversation.

D. Content Passing and Information Sharing

Once we have the ontology classes in place, the content man-
ager, and the content language registered inside the agent, we
can fill out the content of a message and send it.

The following example shows the steps taken to send a mes-
sage with a meaningful content inside. First, we set up the slots
for the needed ontology class, then we add an action to the list
of content elements (in the case of AgentAction), and finally, we
fill the content of the message, which is then sent to the proper
agent.

protected ACLMessage prepareResponse(ACLMessage request) throws RefuseException,

NotUnderstoodException

ACLMessage response request.createReply();

response.setPerformative(ACLMessage.AGREE);

try

Deliver deliv new Deliver();

// set up the slots for Deliver AgentAction

deliv.setCustomer(request.getAID())

deliv.setOrder(theOrder);

Action actionD new Action();

actionD.setActor(request.getAID());

actionD.setAction(deliv);

ContentElementList contEl new ContentElementList();

contEl.add(actionD);

response.setLanguage(codec.getName());

response.setOntology(ontologyscm.getName());

contentmanager.fillContent(response, contEl);

catch(Exception e) e.printStackTrace();

return response;

Information can be shared among agents by

A) passing the desired information as a parameter onto the
constructor of a registered behavior;

Order new Order();

0rder.setDestination(“City”);

order.addOrdered products(products);

Behavior requestOrder new MyInform(this, request, order);

addBehavior(requestOrder);

B) using a set of available variables that provide
the keys to retrieve the information from the DataS-
tore of the behaviors. The DataStore of a behavior is a
HashMap of keys with which messages can be paired
in order to retrieve and send the information almost
anywhere in the system. This facilitates the distribu-
tion of information and its penetration deeply into the
system where and when it is needed.

protected Vector prepareCfps(ACLMessage cfp)

Vector cfpsVector new Vector();

DataStore ds (DataStore)getDataStore();

setDataStore(ds);

ACLMessage info (ACLMessage) ds.get(requestB.REQUEST KEY);

System.out.println(“We retrieved the message:” info);

try

ContentElement ce manager.extractContent(info);

--

catch(Exception e) e.printStackTrace();

v.addElement(cfp);

return cfpsVector;

V. ILLUSTRATION ON A SIMPLE SCENARIO

We start from the following assumptions.

— The negotiation process is driven by the manufac-
turers’ need for a specific resource.

— When a resource has been produced or received, it is
made available to the next entity in the supply chain
that needs it.

— Agents know about each other’s capabilities through
the Directory Facilitator with which they are registered
at start up, which makes it easier to add new agents

— To initiate and engage in a transaction dialog, agents
will be equipped with appropriate protocols and abili-
ties that influence their dealings with others.

We will illustrate how the system works on a simple scenario
(see Figs. 7 and 10).

The customer inputs the order through the order taking form
via The Customer Agent’s graphical user interface (see Fig. 14).
This form captures the demand, which will initiate the supply

ULIERU AND COBZARU: BUILDING HOLONIC SUPPLY CHAIN MANAGEMENT SYSTEMS 29

Fig. 14. Customer graphical user interface (GUI).

chain. The message exchange is depicted in Fig. 10. The request
(part of an Initiator Fipa-Request-Protocol) will be sent to the
Order Manager Agent.

The Order Manager Agent is equipped with a Responder
Fipa-Request-Protocol to answer the request and will redirect
the order upon arrival to Logistics Agents with a cfp for the
ordered products.

The Logistics Agent acts on behalf of the Assembly Plant and
is embedded with a Responder Fipa-Contract-Protocol. Upon
receiving the cfp from the Order Manager Agent for a certain
order, it will start contacting manufacturers and suppliers for
components and parts (materials). A negotiation function is used
in conjunction with this protocol. The agent that buys compo-
nents to assemble them later into the final product will have an
implementation of FIPA Iterated Contract Net with the role of
Initiator and each of the participants (agents) in the negotiation
will have their own protocol of FIPA Iterated Contract Net with
the corresponding roles of participants or responders. The ne-
gotiation takes place in the form of bids and deals with reaching
a common price for a certain component. If the negotiation re-
sults in a price acceptable to both parties, the rule-based engine
of each agent (see Fig. 12) switches to a settlement stage and the
required component (resource) will be transferred to the buyer.

A Rule-based engine with a set of specific rules is integrated
into the responders (Plant Agents) to determine what actions
should be taken at a certain point in the negotiation process.
Once a Plant Agent has agreed to supply a particular resource
at a certain price, it fulfils its commitment by running the task
that produces it.

A similar engine is used by the Initiator of the FIPA Iterated
Contract Net (the Logistics Agent), which starts to call for pro-
posals from manufacturers and suppliers and based on its goals,

it iterates these proposals until an acceptable offer is made or a
certain period of time elapses.

If all resources are sufficient and all negotiations end well, the
Logistics Agent will contact the Transport Agent for available
routes and prices in order to transport the final product to the
Distribution Center and the Bank Agent to request the needed
transaction. The Logistics Agent finishes its job by sending its
proposal back to the Order Manager Agent, which will decide
based on the final price and delivery time whether the order
complies with the customer requirements and, if it does, will
send an “agree” message to the Customer Agent (as in Fig. 10).

On the other side, if the negotiation at the enterprise level be-
tween the Logistics Agent and the manufacturers does not reach
a common ground, a “refuse” message will be sent back to the
Order Manager Agent, which in turn will inform the Customer
Agent of the failure to satisfy its requirements.

VI. CONCLUSION

As the effectiveness of centralized command and control in
SCM starts to be questioned, there is a critical need to orga-
nize supply chain systems in a decentralized and outsourced
manner. Agent-based models can easily be distributed across
a network due to their modular nature. Therefore, the distribu-
tion of decision-making and execution capabilities to achieve
system decentralization is possible through models of operation
with communication among them. In principle, each entity in
a supply chain can maintain an agent-based model of its oper-
ations and make only a part of these operations (those that are
needed) available to its partners. In other words, entities in the
supply chain operate subject to their local objectives, but they
can incorporate constraints and data derived form the operations
of their supply chain partners.

30 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 1, NO. 1, FEBRUARY 2005

Having selected and employed a framework that provides
portability in distributed environments and interoperability en-
ables us to pass data between applications and share functional-
ities. The ontology structure of the JADE framework is, in our
opinion, one of the best designed to address the issues of ac-
cessing and sharing information pertinent to a specific appli-
cation. The combination of behavior features and the ontology
structure makes a powerful means of penetrating information
deeply into the system. Thus, in our case, information about an
order, a product, or a customer can be accessed even at the far
end of the supply chain if needed (e.g., a supplier of materials
for a supplier that provides parts for a manufacturer of compo-
nents, which in turn provides these to an assembly plant, can
obtain information about an order as long as the order has en-
tered the system at some point). Making the most of this feature
can push a customer order deeply into the supply chain, thus
providing a customer-centric approach to SCM.

This work can be further improved by

— extension of the ontology to include most of the terms
related to supply chain management, thus creating a
basis for building product specific ontologies;

— integration of plant scheduling and control. Enabled
by the interconnection of the enterprise and intraen-
terprise levels, it lays the ground for building and im-
plementing a virtual enterprise in which the organiza-
tion and automation of the manufacturing processes is
incorporated within wide supply chain networks and
their related management systems.

REFERENCES

[1] Apprise Company [Online]. Available: http://www.apprise.com/ap-
prisenet.asp

[2] M. Barbuceanu. An architecture for agents with obligations. [Online].
Available: http://www.eil.utoronto.ca/

[3] R. D. Blackwell and K. Blackwell, “The century of the consumer: Con-
verting supply chains into demand chains,” Supply Chain Manage. Rev.,
Fall 1999.

[4] J. H. Christensen, “Holonic manufacturing systems: Initial architecture
and standards directions,” in Proc. First Eur. Conf. Holonic Manufac-
turing Syst., 1994.

[5] M. Cobzaru, “Agent-Based Supply Chain Management System,” M.Sc.
thesis, Elect. Eng. Dept., Univ. Calgary, Calgary, AB, Canada, 2003.

[6] Foundation for Intelligent Physical Agents—FIPA Specification
Repository (2002). [Online]. Available: http://www.fipa.org/reposi-
tory/index.html

[7] Java Agent Development Environment [Online]. Available:
http://sharon.cselt.it/projects/jade/

[8] J. D. Edwards Co. [Online]. Available: http://www.jdedwards.com/
[9] E. A. Kendall, “Agent roles and role models: New abstractions for mul-

tiagent system analysis and design,” in Proc. Int. Workshop Intelligent
Agents Inf. Process Management, Sep. 1998.

[10] M. Knapik and J. Johnson, Developing Intelligent Systems for
Distributed Systems: Exploring Architecture, Technologies, and Appli-
cations. New York: McGraw-Hill, 1998.

[11] Manugistics’ SCM [Online]. Available: http://www.manugis-
tics.com/solutions/scm.asp

[12] P. J. Metz, “Demystifying supply chain management,” Supply Chain
Management Review, Winter 1998.

[13] Oracle [Online]. Available: http://www.oracle.com/applications/B2B/
[14] PeopleSoft [Online]. Available: http://www.people-

soft.com/corp/en/products/line/scm/
[15] SAP Co. [Online]. Available: http://www.sap.com/
[16] J. N. Sheth, R. S. Sisodia, and A. Sharma, “The antecedents and conse-

quences of customer-centric marketing,” J. Acad. Market Sci., 2000.
[17] M. Ulieru, R. Brennan, and S. Walker, “The holonic enterprise—A

model for internet-enabled global supply chain and workflow manage-
ment,” Int. J. Integr. Manuf. Syst., vol. 13, no. 8, 2002.

Mihaela Ulieru (M’95–SM’02) received the M.Sc. degree in electrical engi-
neering and computer science from the Electrical Engineering and Computer
Science Department, Politehnica University, Bucharest, Romania, in 1985 and
the Dr.-Ing. degree in electrical engineering and computer science from the Con-
trol Engineering and Computer Science Department, Darmstadt University of
Technology, Darmstadt, Germany, in 1995.

She was a Postdoctoral Fellow in intelligent distributed systems with the
Intelligent Robotics and Manufacturing Systems Laboratory, School of Engi-
neering Science, Simon Fraser University, Vancouver, BC, Canada, from 1996
to 1998. Her research targets the design and implementation of adaptive infor-
mation infrastructures fueling tomorrow’s e-Society.

Dr. Ulieru chairs several International R&D initiatives and is on the IEEE
AdCom board of the Industrial Electronics Society, in charge of the emerging
area of Industrial Informatics. In 2001, she founded the Canadian Global Agents
Integration Network (GAIN), which joined the research efforts of 19 Universi-
ties and Research Institutes across Canada, working together to develop intel-
ligent web services for collaborative virtual organizations. Her extensive work
with the industry led to her significant contributions to the emerging area of
Industrial Informatics, which earned her the Chairmanship of the First IEEE
International Conference on Industrial Informatics and the prestigious Canada
Research Chair Award from the National Science and Engineering Research
Council of Canada.

Mircea Cobzaru received the B.Sc. degree in mechanical engineering from the
Technical University of Iassy, Iassy, Romania in 1989 with a thesis on “Auto-
mated orbital machine for manufacturing valves” and the M.Sc. degree in elec-
trical and computer engineering from the University of Calgary, Calgary, AB,
Canada, in 2003, with a thesis on “Agent-based supply chain management sys-
tems.”

Since 2004, he has been a Technical Support Engineer with Verity, Inc. Cal-
gary, in charge of the Verity search and indexing enterprise applications. From
1997 to 2000, he was Production Manager at Magna Shutters, Calgary, where
he coordinated activities of manufacturing, production control, and material
planning and provided technical assistance regarding manufacturing and in-
stallation. His current research interests are in the areas of software simulation
and modeling, intelligent systems, agent-oriented software, robotics, multidisci-
plinary interests (supply chain, manufacturing, information technology), search
engines, information retrieval, document indexing, and classification.

	toc
	Building Holonic Supply Chain Management Systems: An e-Logistics
	Mihaela Ulieru, Senior Member, IEEE, and Mircea Cobzaru
	I. M OTIVATION A GENT T ECHNOLOGIES AS E NABLERS OF T ODAY'S S U
	A. Traditional Approaches
	B. Requirements for the Next Generation SCM Systems
	C. Case for Agents

	II. N EW T RENDS F ROM S UPPLY C HAIN TO C OLLABORATIVE C LUSTER

	Fig.€1. Layers in Holonic manufacturing defining a manufacturing
	III. I MPLEMENTATION OF A H OLONIC SCM S YSTEM FOR A G LOBAL E N
	A. Agent-Based Application Development Methodology

	Fig.€2. Agent-based application development methodology [9] .
	B. Application Analysis
	1) Business Description: Supply chain business processes usually
	2) Product Description: Building products like telephones or ans

	Fig.€3. Business domains and relationships in an agent-based sup
	Fig.€4. Order-management holarchy.
	3) Order Management Holarchy: At this level, the following entit

	Fig.€5. Manufacturing holarchy.
	4) Manufacturing Holarchy: The participants in the manufacturing
	5) System Requirements: The requirements are divided into three

	Fig.€6. Supply chain holarchy.
	6) Supply Chain Agents Role Modeling: Having defined the entitie

	Fig.€7. Conceptual model of supply chain agents.
	Fig.€8. Functional perspective of system architecture.
	C. Agency Design
	1) System Software Architecture: To build our SCM system, we wil

	Fig.€9. Class structure for customer agent.
	2) Agent Definitions and Responsibilities: Based on their role m
	Description: Acts on behalf of the Assembly Plant, manages shipp
	Protocols: FIPA REQUEST protocol, FIPA CONTRACT NET protocol, an
	Responsibilities: To register with the directory facilitator as
	3) Knowledge Modeling: To model the knowledge that will be used
	Concepts: Expressions that indicate entities that exist in the w
	Predicates: Expressions that state the ability of agents in the
	Agent Actions: Expressions that indicate actions that can be per
	4) Agent Class Structure: Fig.€9 shows the minimum structure of
	5) Message Sequence Diagram: Fig.€10 presents a sequence diagram

	Fig.€10. Sequence diagram depicting interactions among SCM agent
	D. Application Realization
	1) Ontology Creation: Our scenario considers the manufacturing a

	TABLE I I NSTANCES OF P RODUCTS
	TABLE II O RDER C ONCEPT
	TABLE III D ELIVER A CTION
	2) Rule-Based Engine: The rule-based engine presented in Fig.€12
	IV. A GENT C REATION

	Fig.€11. Dependency relationships in the supply chain domain ont
	A. Behaviors in JADE
	B. Interaction Protocols in JADE

	Fig.€12. Rule-based engine (XML).
	Fig.€13. Class hierarchy for JADE behaviors.
	C. Nesting Protocols
	D. Content Passing and Information Sharing
	V. I LLUSTRATION ON A S IMPLE S CENARIO

	Fig.€14. Customer graphical user interface (GUI).
	VI. C ONCLUSION

	Apprise Company [Online] . Available: http://www.apprise.com/app
	M. Barbuceanu . An architecture for agents with obligations . [O
	R. D. Blackwell and K. Blackwell, The century of the consumer: C
	J. H. Christensen, Holonic manufacturing systems: Initial archit
	M. Cobzaru, Agent-Based Supply Chain Management System, M.Sc. th

	Foundation for Intelligent Physical Agents FIPA Specification Re
	Java Agent Development Environment [Online] . Available: http://
	J. D. Edwards Co. [Online] . Available: http://www.jdedwards.com
	E. A. Kendall, Agent roles and role models: New abstractions for
	M. Knapik and J. Johnson, Developing Intelligent Systems for Dis

	Manugistics' SCM [Online] . Available: http://www.manugistics.co
	P. J. Metz, Demystifying supply chain management, Supply Chain M

	Oracle [Online] . Available: http://www.oracle.com/applications/
	PeopleSoft [Online] . Available: http://www.peoplesoft.com/corp/
	SAP Co. [Online] . Available: http://www.sap.com/
	J. N. Sheth, R. S. Sisodia, and A. Sharma, The antecedents and c
	M. Ulieru, R. Brennan, and S. Walker, The holonic enterprise A m

